Abstract

Rice straw, an abundant, lignocellulosic agricultural residue was thermochemically modified with citric acid to develop a biodegradable cationic adsorbent. The application potential of the prepared adsorbent to remove hazardous Crystal Violet dye from its aqueous solution was investigated. The morphological and chemical characteristics of the adsorbent were established by scanning electron microscopy (SEM), surface area, and porosity analysis by the BET (Brunauer, Emmett, and Teller) nitrogen adsorption method and Fourier transform infrared (FTIR) spectroscopy. Batch adsorption studies were carried out as a function of solution pH, adsorbent dose, initial dye concentration, and temperature, in order to get insights into the effect of these independent parameters on the adsorption process. The Langmuir, Freundlich, and Dubinin–Radushkevich models were used to describe the equilibrium adsorption data. The sorption mechanism was also evaluated in terms of kinetics and thermodynamics. The adsorption equilibrium data was well described by the Langmuir isotherm model. The adsorption process followed the pseudo-second-order rate kinetics. Thermodynamic study showed spontaneous and exothermic nature of the adsorption process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.