Abstract

AbstractPoly(ethylene glycol dimethacrylate‐1‐vinyl‐1,2,4‐triazole) [poly(EGDMA‐VTAZ)] beads (average diameter = 150–200 μm) were prepared by copolymerizing ethylene glycol dimethacrylate (EGDMA) with 1‐vinyl‐1,2,4‐triazole (VTAZ). Poly(EGDMA‐VTAZ) beads were characterized by swelling studies and scanning electron microscope (SEM). The adsorption of Cr(VI) from solutions was carried at different contact times, Cr(VI) concentrations, pH, and temperatures. High adsorption rates were achieved in about 240 min. The amount of Cr(VI) adsorbed increased with increasing concentration and decreasing pH and temperature. The intraparticle diffusion rate constants at various temperatures were calculated. Adsorption isotherms of Cr(VI) onto poly(EGDMA‐VTAZ) have been determined and correlated with common isotherm equations such as Langmuir and Freundlich isotherm models. The Langmuir isotherm model appeared to fit the isotherm data better than the Freundlich isotherm model. The pseudo first‐order kinetic model was used to describe the kinetic data. The study of temperature effect was quantified by calculating various thermodynamic parameters such as Gibbs free energy, enthalpy, and entropy changes. The dimensionless separation factor (RL) showed that the adsorption of metal ions onto poly(EGDMA‐VTAZ) was favorable. It was seen that values of distribution coefficient (KD) decreasing with Cr(VI) concentration in solution at equilibrium (Ce) indicated that the occupation of activate surface sites of adsorbent increased with Cr(VI). © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.