Abstract

Pipe scales in drinking water distribution systems (DWDS) potentially adsorb chromium (Cr). Meanwhile, the fate of Cr in pipe scales and water could be influenced by the disinfectants used in DWDS since they might influence the valence state of Cr. Therefore, the adsorption of Cr (Cr(VI) and Cr(III)) on pipe scales, the transformation between different valence states, and the effects of disinfectants present in DWDS are important research topics for improving tap water quality but have not yet been sufficiently investigated. This study investigated the properties of layered pipe scales and conducted adsorption kinetic experiments in single and binary Cr(VI) and Cr(III) systems, as well as experiments related to the oxidation and adsorption of Cr(III) under the influence of decaying disinfectants. According to the results, pipe scales exhibited distinct layered structures with varying mechanisms for the adsorption of Cr(VI) and Cr(III). Cr(VI) was adsorbed through surface complexation on the surface and porous core layers, while redox reactions predominantly occurred on the shell-like layer. Furthermore, Cr(III) was adsorbed via surface precipitation on the three-layer pipe scales. Importantly, disinfectants promoted the transformation of Cr(III) to the less readily released Cr(VI) in pipe scales, reducing the Cr exposure risk from the pipe scale phase. Pipe scales also decreased the Cr(VI) concentration in water (almost 0 mg/L), enhancing the safety of DWDS. This study provides theoretical guidance on the safe operation of DWDS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.