Abstract

An inorganic chemically active adsorbent (ICAA), SG(1)-TEPA (tetraethylenepentaamine)-propyl, is developed for removal, recovery, and recycling of copper cyanide from industrial waste streams. Equilibrium studies are executed to determine and model adsorption of the copper cyanide complex from aqueous solutions in a batch and packed column. It appears that adsorption is dependent on anionic copper cyanide species and the basicity of the ligand. Aqueous-phase equilibrium modeling shows that monovalent (Cu(CN)2-), divalent (Cu(CN)32-), and trivalent (Cu(CN)43-) species of copper cyanide exist in the solution, depending on the pH and the concentration of total cyanide ions. Batch adsorption data are modeled using a modified multicomponent Langmuir isotherm which includes aqueous-phase speciation and basicity of the SG(1)-TEPA-propyl. This developed model is applied with a mass balance equation to describe the adsorption of copper cyanide complexes in a packed column.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.