Abstract

The native and physico-chemically treated fungal biomasses of Neurospora intermedia were used for adsorption of colored pollutants from distillery spent wash in batch systems. Experiments were conducted at varying color concentrations of the effluent (1,000-6,500 CU). The kinetics of effect of initial sorbate concentration, dose of biosorbent, temperature, and pH on adsorption were studied. Physical and chemical pretreatments of biomass resulted in an increase or decrease in color removal capacity. This effect was further studied by FTIR analysis of the dried fungal mycelium. The maximum color uptake on all the tested fungal biomass preparations was observed at pH 3.0 and temperature 30 °C, within first 4 h. The Langmuir and Freundlich adsorption models were used for the mathematical description of the biosorption equilibrium and the data showed an optimal fit to these isotherms. Kinetic parameters indicated the dominance of Lagergren pseudo first-order kinetic model for adsorption. On the basis of maximum adsorption capacity, the color removal capacity by fungal preparations was in the order of native > heat > acid, base.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.