Abstract

A comparative adsorption study of three gases viz. CO, CO 2 and CH 4 on two adsorbents viz. Cu-BTC (or HKUST-1) and Cr-BDC (or MIL-101) is reported in this article. The gravimetric adsorption equilibrium measurements on the samples were performed in a Rubotherm magnetic suspension balance at three different temperatures: 295, 318 and 353 K and pressures ranging between 0 and 100 bar. Virial-Langmuir model was used to model the experimental data on Cu-BTC, whereas Dual Site Langmuir (DSL) model was used for adsorption on MIL-101. For all gases the enthalpy of adsorption at low loading was higher on MIL-101 than that on Cu-BTC, indicating the availability of open metal sites in case of MIL-101. Moreover, a sharp decrease in enthalpy of adsorption is observed in case of MIL-101, whereas only a moderate decrease is observed in case of Cu-BTC. CO has a large Henry’s constant on MIL-101, whereas at higher pressures, the solid exhibits better capacity for CO 2. In case of Cu-BTC, CO 2 has a higher capacity on the adsorbent as compared to the other two gases throughout the entire range of pressures studied. All the experimental data is critically analyzed by examining the role of open metal centers, adsorbate polarity and the effect of temperature on the electrostatic interactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.