Abstract

Iron and Mn oxides and associated radionuclides in soils and sediments from the radioactive waste burial grounds at Oak Ridge National Laboratory have been selectively extracted using wet chemical techniques. Product-moment-correlation analyses have demonstrated that 60Co and various actinides, principally 244Cm, 241Am and 238Pu are dominantly associated with Mn oxides. Correlation coefficients between these radionuclides and Fe oxides and organic C are generally very low. The important role of Mn oxides in radionuclide adsorption is attributed to their unique surface and colloidal properties. The data illustrate the importance of the Mn oxide component of soils and sediments in controlling transition metal and actinide solubility. These results suggest two major implications for the disposal of radioactive waste. First, in order to minimize future 60Co and actinide mobilization from disposal sites, a chemical environment in which Mn oxides are least soluble should be maintained. Second, the liberal use of Mn oxides in waste management operations might improve long-term retention of these radionuclides. Deep-sea Mn modules, which may in the future be mined for their trace metal contents, could serve as a ready supply of Mn oxide for waste disposal applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.