Abstract

The use of nanoparticles as anticancer cargo systems for drug delivery is a promising modality, as they avoid the known toxicity of anticancer drugs on healthy cells by the delivery of multiple drugs to the target cells. Here, the adsorption behavior of cisplatin drug molecules in two different inorganic materials, silica and metallic gold, is investigated mathematically. The 6–12 Lennard-Jones potential, together with the continuum approximation, is adapted to calculate the molecular interatomic energies between molecules. For each material, the relation between the pore radius ℓ and the minimum energy is determined, and the results indicate that the minimum energy occurs when the radii are ℓ=5.3 and ℓ=4.7 Å for the silica and gold nanopores, respectively. The method is promising for applications in the design of novel nanocapsules for future targeted drug and gene delivery.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.