Abstract

Plantain (Musa paradisiaca) wastes are readily available in Nigeria and if not properly managed, they constitute nuisance to the environment. They could be used, however to produce resource materials, such as activated carbon that are of public health importance. Therefore, this study assessed the use of plantain wastes in the bio-sorption of chromium from battery recycling effluent. Plantain wastes were collected from a plantation, sun-dried and ground. These were then carbonized and activated using phosphoric acid at high temperature. Samples of effluent from Ogunpa River were subjected to physico-chemical (pH, conductivity, Total Dissolved Solid (TDS) and Chromium (Cr)) analyses, using standard methods. Batch experiment studies were used in determining the adsorption isotherms of the adsorbents at varied effects of pH (2 to 12) and adsorbent doses (0.1 to 2.0g) with treatments by plantain prepared activated carbons. Data was analysed using descriptive statistics, paired t-test and ANOVA at 5% level of significance. Means of pH, conductivity, TDS and Cr+6 of the effluent sample were: 2.0 ± 0.2, 2164.7 ± 0.6 µs/cm, 895 ± 0.00 mg/l and 13.5 ± 0.0 mg/l respectively. The highest quantities (68.02%) of Cr were removed at pH 10 while the optimum adsorbent dose (2.0g) removed 68.91% of Cr. The adsorbents showed satisfactory fits of adsorption to Langmuir and Freundlich models. Adsorbents had capacity for the uptake of chromium from effluent generated from battery recycling plant with plantain peel activated carbon having the highest adsorption capacity. Conversion and treatment of effluent with plantain wastes should be encouraged in battery recycling plant, to reduce its menace in the environment and promote effective waste management.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call