Abstract

Graphene doped by nitrogen (N) and/or boron (B) is used to represent the surface models of coal with the structural heterogeneity. Through the density functional theory (DFT) calculations, the interactions between coalbed methane (CBM) and coal surfaces have been investigated. Several adsorption sites and orientations of methane (CH4) on graphenes were systematically considered. Our calculations predicted adsorption energies of CH4 on graphenes of up to −0.179eV, with the strongest binding mode in which three hydrogen atoms of CH4 direct to graphene surface, observed for N-doped graphene, compared to the perfect (−0.154eV), B-doped (−0.150eV), and NB-doped graphenes (−0.170eV). Doping N in graphene increases the adsorption energies of CH4, but slightly reduced binding is found when graphene is doped by B. Our results indicate that all of graphenes act as the role of a weak electron acceptor with respect to CH4. The interactions between CH4 and graphenes are the physical adsorption and slightly depend upon the adsorption sites on graphenes and the orientations of methane as well as the electronegativity of dopant atoms in graphene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.