Abstract

The affinity of Cd(2+) toward carboxyl-terminated species covalently bound to monodisperse superparamagnetic iron oxide nanoparticles, Fe(3)O(4)(np)-COOH, was investigated in situ in aqueous electrolytes using rotating disk electrode techniques. Strong evidence that the presence of dispersed Fe(3)O(4)(np)-COOH does not affect the diffusion limiting currents was obtained using negatively and positively charged redox active species in buffered aqueous media (pH = 7) devoid of Cd(2+). This finding made it possible to determine the concentration of unbound Cd(2+) in solutions containing dispersed Fe(3)O(4)(np)-COOH, 8 and 17 nm in diameter, directly from the Levich equation. The results obtained yielded Cd(2+) adsorption efficiencies of ~20 μg of Cd/mg of Fe(3)O(4)(np)-COOH, which are among the highest reported in the literature employing ex situ methods. Desorption of Cd(2+) from Fe(3)O(4)(np)-COOH, as monitored by the same forced convection method, could be accomplished by lowering the pH, a process found to be highly reversible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.