Abstract

The muscovite mica clay-graphene oxide-maghemite-magnetite (γ-Fe2O3-Fe3O4) composite was first used for the adsorption of caesium(I) and cobalt(II). The presence of clay minerals, graphene oxide, maghemite, and magnetite was detected in the prepared composite by XRD, WD-XRF, Mössbauer spectroscopy, and ATR-FTIR. The SEM and TEM results show that the composite has a layered structure with irregularly shaped pores on the surface. It was found that the adsorption of ions depends on the initial concentration, pH (except for caesium), mass of adsorbent, temperature, and contact time. The maximum adsorption capacity for Cs(I) and Co(II) was 2286mg/g and 652mg/g, respectively, and was obtained at concentrations (Cs(I) = 12,630mg/L; Co(II) = 3200mg/L), adsorbent mass of 0.01g, pH (Cs(I) = 7; Co(II) = 5), temperature of 20 ± 1°C, and contact time of 24h. The high adsorption capacity of the composite could be due to a diversity of functional groups, a large number of active sites or the multilayer adsorption of caesium and cobalt ions on the surface of the composite. The Freundlich, Langmuir isotherms, and the pseudo-second-order kinetic model better describe the adsorption of these ions on the composite. The adsorption was non-spontaneous endothermic for Cs(I) and spontaneous endothermic for Co(II). The proposed mechanism of adsorption of Cs and Co ions on the composite is complex and involves electrostatic interactions and ion exchange. The ANFIS model proved to be quite effective in predicting the adsorption of Cs(I) and Co(II), as shown by the obtained values of R2, MSE, SSE, and ARE.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call