Abstract

Proteins are abundant biomolecules found in human cells, as well as pathogenic bacteria and viruses. Some of them become pollutants when released into water. Adsorption is an advantageous method for separating proteins in aqueous media since proteins are already immobilized on solid surfaces. Adsorbents with surfaces rich in tannins are efficient due to their affinity for strong interactions with the various amino acids that make up proteins. This work aimed to develop an adsorbent for protein adsorption in aqueous medium using lignocellulosic materials modified from eucalyptus bark and vegetable tannins. A more efficient resin was prepared containing 10% eucalyptus bark fibers and 90% tannin mimosa by condensation with formaldehyde, and it was characterized by UV–Vis, FTIR-ATR spectroscopy and determinations of degree of swelling, bulk and bulk density and specific mass. For UV–Vis spectroscopy the percentage of condensed and hydrolysable tannins in the extracts of fibers of the dry husks of Eucalyptus Citriodora was estimated and it was also determined your soluble solids. The study of bovine serum albumin (BSA) adsorption was carried out in batch with quantification by UV–Vis spectroscopy. The most efficient prepared resin obtained 71.6 ± 2.78% removal in a solution of 260 mg L−1 of BSA working in a better pH range of the aqueous solution of BSA in its isoelectric point, ~ 5, 32 ± 0.02, under these conditions, the synthesized resin can reach a maximum BSA adsorption capacity of ~ 26.7 ± 0.29 mg g−1 in 7 min. The new synthesized resin presents good prospects for adsorption of proteins or species that in their structure have higher percentages of amino functional groups or amino acids with aliphatic, acidic and/or basic hydrophilic characteristics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call