Abstract

The GCMC (grand canonical Monte Carlo) simulation technique was used to predict the competition adsorption characteristics of benzene and propene in different pore systems of MCM-22. The nine-site model of benzene was used, which proved to be effective and efficient. The zeolite was divided into three adsorption sites following a simulated annealing method. It is found that benzene and propene have the same preferential adsorption site and a similar adsorption order in different sites. Moreover, the pure and mixture isotherms of the three sites are drawn. From the isotherms, we obtained a selectivity reversal of the mixture isotherms of benzene and propene in different sites. It is also noted that the competition adsorption in the three adsorption sites for the two adsorbates can fall into three successive steps and the adsorption order of propene in mixture in these three sites is S3→S1→S2. A new model is presented to predict the benzene and propene adsorption equilibrium in MCM-22. This approach yields better multicomponent equilibrium predictions than ideal adsorbed solution theory (IAST). Isotherms at different mole fraction of benzene in gas phase indicate an advantage to increase the feed radio of benzene and propene. Thus, this work is helpful for a better understanding of the adsorption mechanism of benzene and propene in MCM-22 and hence the relation of the catalytic properties of the zeolite to its structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call