Abstract

Many strains of bacteria are able to adsorb Ca(II) and Mg(II) ions from aqueous solution and, in some cases, the adsorption can be very specific. For example, Bacillus subtilis typically binds Mg(II) much more readily than Ca(II). Bacteria can also adhere to the surfaces of minerals containing calcium and magnesium, either enhancing or depressing the flotation of these minerals. Since B. subtilis binds Mg(II) preferentially, it was reasoned that adhesion to a mineral containing magnesium and calcium (dolomite) might be quite different from adhesion to a mineral containing only calcium (apatite) and this difference could possibly be utilized in minerals processing. Experiments investigating the binding of Ca(II) and Mg(II) to B. subtilis cells were initiated and anionic collector microflotation of pure dolomite and apatite mineral samples in the presence and absence of these bacteria was performed. Since Ca(II) and Mg(II) also bind to dolomite and apatite, zeta potential measurements as a function of pH in the presence and absence of these ions were performed in order to better elucidate the effect this binding may have on the attachment of B. subtilis to the two minerals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.