Abstract

The adsorption behaviors of arsenic As(V) on the iron modified attapulgite (Fe/ATP) were studied. Two types of Fe/ATP nanoparticles, including Fe(III)/ATP and Fe(II,III)/ATP were prepared by ultrasonic co-precipitation method and characterized using SEM, XRD, XPS, FT-IR and zeta potential analyses. The adsorption isotherms of As(V) on Fe/ATP were well fitted by Freundlich model. The adsorption kinetics data were followed by the pseudo-second-order model with the pseud-second-order rate constant (k, min−1) of − 0.033 for Fe(III)/ATP and − 0.037 for Fe(II,III)/ATP, respectively. Adsorption capacities of Fe/ATP were 5–6 times higher than ATP (5.2 mg g‒1). The Fe–O(H) groups on Fe/ATP contributed to the strong interaction for As(V), confirmed with FT-IR and XPS analyses. The higher adsorption capacity of Fe(III)/ATP than that of Fe(II,III)/ATP was attributed to more surface hydroxyl groups on Fe(III)/ATP. Surface complexation models and density functional theory calculations demonstrated that As(V) sorption on Fe/ATP was by virtue of the formation of monodentate complexes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.