Abstract

The environmental risks of antibiotics have attracted increasing research attention, but their environmental behaviors remain unclear. In this study, functionalized carbon nanotubes (CNTs), namely, hydroxylized (MH), carboxylized (MC), graphitized multi-walled CNTs (MG) and single-walled CNTs (SW) were used as adsorbents and ciprofloxacin (CIP) as an adsorbate to investigate the effect of pH and temperature on sorption and desorption processes. Sorption isotherms of CIP were fitted well by Freundlich and Dubinin–Ashtakhov models. Highly nonlinear isotherms of CIP were observed, indicating the highly heterogeneous site energy distribution on CNTs. At all pHs, SW had the highest sorption for CIP due to its largest surface area among all CNTs. Sorption distinction between MH and MC was explained by π–π electron donor–acceptor interactions. For SW, CIP sorption was thermodynamically favorable and endothermic associated with an entropy driven process, while the reverse process occurred for MC and MG. The rearrangement of CNTs bundles/aggregates and covalent bond formation may be responsible for CIP desorption hysteresis on CNTs. Desorption of antibiotics from CNTs may lead to potential exposure, particularly under changing environmental conditions such as temperature and pH.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.