Abstract

Magnesium hydroxide-coated pyrolytic bio-char composite was prepared by chemical precipitation, and the adsorption behavior of anionic dye (directly frozen yellow) onto magnesium hydroxide-coated pyrolytic bio-char was investigated in the batch mode. The Fourier transform infrared spectroscopy, X-ray diffraction spectroscopy and X-ray fluorescence spectroscopy of adsorbents were characterized. Adsorption studies were performed at different pH, salt concentration, contacting time and dye concentration. The pH value of the solution influenced the adsorption capacity significantly, and adsorption is favored of pH 6–8. Salt coexisted in solution increased slightly directly frozen yellow adsorption capacity. The isotherm data were analyzed by Langmuir and Freundlich isotherm model, and Langmuir model was better to predict the equilibrium data. Thermodynamic calculations showed that the adsorption was a spontaneous and endothermic process. Exhausted magnesium hydroxide-coated pyrolytic bio-char was treated by microwave irradiation, and yield of regeneration was 98 % in the case of microwave irradiated time 5 min at 320 W. The magnesium hydroxide-coated pyrolytic bio-char can be reused.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call