Abstract

The possibility to load submicrometer porous titanium surfaces with relatively small proteins, albumin and immunoglobulin G (IgG) was investigated. The loading ability is of interest due to the possibility of slow release of molecules from biomaterial surfaces, and may be important for the manipulation of wound healing around prostheses. Iodine-125 ( 125 I ) labeled albumin and IgG were adsorbed onto smooth and to porous titanium with a pore diameter of 200–300 nm. The smooth and porous surfaces were divided into three groups: hydrophilic, hydrophobic, or to amine-terminated silane (3-aminopropyltriethoxysilane) that bound proteins via glutaraldehyde. The protein solution pH and protein concentrations were varied, and the adsorption experiments made without or in the presence of calcium and magnesium ions. The adsorbed amounts were quantified with a gamma counter. Two to eleven times more proteins adsorbed onto porous than smooth surfaces and the adsorbed amounts increased with increasing protein concentration (0.1–10 mg/ml) during a constant incubation time. The elutability by sodium dodecyl sulphate (SDS) was incomplete on porous surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.