Abstract

We use first-principles density functional theory to investigate adsorption of Al, O, Hf, Y, Pt, and S-atoms on the α-Al2O3(0001) surface. We identify stable adsorption sites and predict binding energies and structures. We find that Al, Hf, and Y preferentially adsorb on threefold-hollow sites, transfer electrons to the surface, and form ionic bonds to the three oxygen atoms. In contrast, the most stable adsorption site for Pt and S is ontop an oxygen atom, and we do not observe significant charge transfer. We find a binding order of S < Pt < O < Al ≪ Y < Hf, which reflects both the ease with which the early transition metals Hf and Y ionize, as well as the (nearly) closed-shell repulsions influencing the adsorption of O, Pt, and S. We use these results to rationalize some observations regarding the stability of thermal barrier coatings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.