Abstract

The adsorption of a rake-type polymeric siloxane surfactant (polydimethylsiloxane-graft-polyether copolymer) on carbon black (CB) particles dispersed in mixtures of water with polar organic solvents (ethanol, formamide, or glycerol) has been investigated. The adsorption obeys the Langmuir isotherm at low surfactant concentrations (below the critical micelle concentration, CMC). At these conditions, the average surface area occupied by one siloxane surfactant follows the sequence water+glycerol mixture>plain water>water+ethanol mixture. At higher surfactant concentrations in the solution in contact with the particles, a sharp increase in the adsorbed amount is observed. The adsorbed layer thickness has been determined by dynamic light scattering. Below the CMC the adsorbed layer thickness is less than 10 nm. Above the CMC, the adsorbed layer thickness increases to 20–30 nm, a length scale comparable to the diameter of the siloxane surfactant micelles in aqueous solution. This fact, together with SANS data that we have obtained in the absence of added polar organic solvent, indicates that the structure of the adsorbed layer is similar to that of micelles. The findings presented here are relevant to waterborne coatings and ink formulations, where polymeric surfactants are used in conjunction with polar organic solvents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.