Abstract

We consider the adsorption of an isolated, Gaussian, random, and quenched copolymer chain at an interface. We first propose a simple analytical method to obtain the adsorption/depletion transition, by averaging over the disorder the partition function instead of the free energy. The adsorption thresholds obtained by previous authors at a solid/liquid and at a liquid/liquid interface for multicopolymer chains can be rederived using this method. We also compare the adsorption thresholds obtained for bimodal and for Gaussian disorder; they only agree for small disorder. We focus on the specific case of an ideally flat asymmetric liquid/liquid interface, and consider the situation where the chain is composed of monomers of two different chemical species A and B. The replica method is developed for this case. We show that the Hartree approximation, coupled to a replica symmetry assumption, leads to the same adsorption thresholds as obtained from our general method. In order to describe the properties of the adsorbed (or depleted) chain, we develop a new approximation for long chains, within the framework of the replica theory. In most cases, the behavior of a random copolymer chain can be mapped onto that of a homopolymer chain at an asymmetric attractive interface. The values of the effective adsorption energy are different for a random and a periodic copolymer chain. Finally, we consider the case of uncorrelated annealed disorder. The behavior of an annealed chain can be mapped onto that of a homopolymer chain at an asymmetric non attractive interface; hence, an annealed chain cannot adsorb at an asymmetric interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call