Abstract

5-hydroxymethylfurfural (5-HMF) is a promising high value-added platform chemical, which can be produced from glucose, fructose, or lignocellulosic biomass via catalysis technology. However, the effective separation of 5-HMF from aqueous solution and actual biomass hydrolysate is still challenging because 5-HMF can be further rehydrated into levulinic acid (LA) and formic acid (FA) under acidic conditions. Herein, the adsorption behavior of glucose and 5-HMF and its follow-up products (LA and FA) from aqueous solutions onto polymeric adsorbents modified with various functional groups (XAD-4, XAD7HP, and XAD761 resins) was systematically investigated. The results showed that XAD761 resin exhibited the highest adsorption selectivity (α5-HMF/glucose = 42.42 ± 5.84, α5-HMF/FA = 18.41 ± 0.50, and α5-HMF/LA = 3.01 ± 0.10) and capacity for 5-HMF (106 mg g–1 wet resin). The adsorption equilibrium was better fitted by the Freundlich isotherm model at the studied range of 5-HMF concentrations. The thermodynamic study and activation energy also revealed that the adsorption process of XAD761 resin for 5-HMF was spontaneous, exothermic, and physical. The kinetic regression results revealed that the kinetic data of 5-HMF was accurately followed by the pseudo-second-order kinetic model. In conclusion, the present study revealed that the potential of phenol formaldehyde resin with hydroxyl groups could be used as an adsorbent for aldehyde organic compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.