Abstract

Functional carbonaceous material (FCM) loaded with carboxylic groups was prepared by hydrothermal carbonization of cellulose in the presence of acrylic acid. The resulting FCM was used as adsorbent for recovery of a water-soluble ionic liquid, 1-butyl-3-methyl-imidazolium chloride ([BMIM][Cl]). The FCM consisted of microspheres (100-150 nm) and had a low surface area (ca. 20 m(2)/g), but exhibited adsorption capacity comparable to that of commercial activated carbon which can be attributed to the presence of high content of polar oxygenated groups (-OH, -C═O, -COOH) as revealed by spectral analyses. Sorption of [BMIM][Cl] onto FCM adsorbent could be well-described by pseudo-second-order kinetics. Thermodynamic and adsorption isothermal analyses revealed that the adsorption process was spontaneous, exothermic, and could be described by the Freundlich adsorption model. The FCM adsorbent could be regenerated effectively and recycled for at least three times without loss of adsorption capacity. The results of this work provide a facile method for production of functional carbonaceous materials from renewable resources that can be used for treatment of aqueous streams containing small concentrations of ionic liquid, [BMIM][Cl].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.