Abstract

Distribution of cesium ( 134Cs and 137Cs) and strontium (Sr-II) between soil/water phases depends on many factors such as concentration of these ions between phases, the cation exchange capacity (CEC) of the soil as well as its clay content, chemical composition (especially Na, K, Ca, and Mg ions), grain size distribution, calcite, iron oxide content, and organic coatings. Distribution coefficients (Kd) of cesium (labeled with 137Cs) and strontium were measured on the grain size distributions ≥32 μm of four soil samples. These soils were obtained from four different locations within Inshas site in Egypt and three groundwater samples were obtained from the same site locations. X-ray diffraction showed that the soil samples consisted mainly of quartz mixed with the minor amounts of kaolonite and clay minerals. Sorption experiments were carried out at strontium aqueous concentrations range 10 −7 to 10 −4 mol l −1. The CEC and Kds for cesium and strontium were measured at the same metal concentrations range. Distribution coefficients of cesium were found to be influenced by the composition of the soil, while the distribution coefficients of strontium were found to depend on calcium concentrations in the soil/groundwater system. The aim of this study was to determine the safety assessment of disposal 137Cs radionuclide and Sr(II) in the aquifer regions inside the Inshas site. Sequential extraction tests showed that, strontium was associated with the carbonate fractions and majority of cesium was sorbed on the iron oxides and the residue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.