Abstract

The adsorption behavior of Basic Red-12 on eucalyptus bark (EB) and its surface derivatives obtained after cationic, anionic, and nonionic surfactant treatment in aqueous solution has been investigated to understand the physicochemical process involved and to explore the potential use of low-cost materials in textile effluent treatment and management. The results revealed that cationic, anionic, and nonionic surfactant modified EB can remove Basic Red-12 dye up to (243.6, 923.0, and 193.28) mg·g–1, respectively, while raw EB can remove dye up to 146.8 mg·g–1 only at 303 K. The adsorption process is found to be pH-dependent, and the optimum pH obtained is 2 to 5. The equilibrium was established in 2 h for EB and in 5 h for surface-modified EB. The process obeys the Langmuir and Freundlich models. Scanning electron microscopic analysis reveals a conspicuous surface morphology change after surfactant modification. The results of Fourier transform infrared (FTIR) spectroscopy reveal that the process is electr...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.