Abstract

The adsorption kinetics and equilibrium of silica-gel functionalized with amino-terminated dendrimer-like polyamidoamine (PAMAM) polymers SiO2-G1.0, SiO2-G2.0 and SiO2-G3.0 for Cu2+ in ethanol fuel were investigated by using batch method. The results indicated that the all the adsorptions of the three adsorbents followed well the pseudo second-order model. The adsorption isotherms were fitted by Langmuir model, Freundlich model and Dubinin–Radushkevich (D–R) model. The results showed that Langmuir model was more suitable to describe the equilibrium data than the Freundlich model. From the D–R isotherm model, the mean free energy E calculated of the three adsorbents showed that the adsorptions were taken place by physical processes. Thermodynamic parameters, ΔG0, ΔH0 and ΔS0 indicated the Cu2+ adsorption to be endothermic and spontaneous with decreased randomness at the solid-solution interface, resulting in their higher adsorption capacities at higher temperature. The effect of generation number of PAMAM polymers loaded on silica-gel, contact time, initial concentration and temperatures on the adsorption capabilities were studied in detail. Moreover, the adsorption mechanism of copper from ethanol fuel was also presumed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call