Abstract

A polar modified post-cross-linked poly (divinylbenzene-co-ethyleneglycol-dimethacrylate) (PCL-PDE) resin was synthesized by suspension polymerization of ethylene glycol dimethacrylate (EGDMA) and divinylbenzene (DVB), and a post-cross-linked reaction. After characterization, the adsorption behaviors of 5-hydroxymethylfurfural (5-HMF) on PCL-PDE resin were determined in comparison with the starting copolymers PDE resin. The equilibrium adsorption capacity of 5-HMF on PCL-PDE resin was much larger than PDE resin and the increase rate was greater than 52.6%. The equilibrium data of 5-HMF onto PCL-PDE resin were found to be better fitted by the Langmuir isotherm model. The kinetic data shows that the adsorption reached equilibrium in a short time (less than 20 min) can be fitted by the pore diffusion model (PDM) at various operating conditions. The effective pore diffusion coefficient was dependent upon adsorption temperature, and were 6.706 × 10−10, 8.958 × 10−10, 1.136 × 10−9 and 1.429 × 10−9 m2 s−1 at 288, 298, 308 and 318 K, respectively. Furthermore, the effects of feed flow rate (Qf = 0.6, 1.5, 3.0 and 6.0 mL min−1) and initial 5-HMF concentration (cf = 0.52, 1.02, 2.00 and 4.96 g L−1) on the adsorption were investigated systematically. Besides, a general rate model (GRM) was used to predict adsorption breakthrough curves of 5-HMF. The simulation results are highly consistent with the experimental data, indicating that the GRM can successfully simulate this process. In the desorption process, the desorption capacity reaches 99.6% of adsorbed capacity, suggesting that the PCL-PDE resin exhibited good reusability. Therefore, it could be suggested that the PCL-PDE resin has a potential application in the separation and purification of 5-HMF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.