Abstract

We examined the zero-field splitting of an iron(II) phthalocyanine (FePc) attached to clean and oxidized Cu(110) surfaces and the dependence on an applied magnetic field by inelastic electron tunneling spectroscopy with STM. The symmetry of the ligand field surrounding the Fe atom is lowered on the oxidized surface, switching the magnetic anisotropy from the easy plane of the bulk to the easy axis. The zero-field splitting was not observed for FePc on a clean Cu(110) surface, and the spin state converts from triplet to singlet due to the strong coupling of Fe d states with the Cu substrate, as is also confirmed by photoelectron spectroscopy. These findings demonstrate the importance of coupling at the molecule-substrate interface for manipulating the magnetic properties of adsorbates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.