Abstract

Recent experiments have shown that transport properties of molecular-scale devices can be reversibly altered by the surrounding solvent. Here, we use a combination of first-principles calculations and experiment to explain this change in transport properties through a shift in the local electrostatic potential at the junction caused by nearby conducting and solvent molecules chemically bound to the electrodes. This effect is found to alter the conductance of 4,4'-bipyridine-gold junctions by more than 50%. Moreover, we develop a general electrostatic model that quantitatively relates the conductance and dipoles associated with the bound solvent and conducting molecules. Our work shows that solvent-induced effects can be used to control charge and energy transport at molecular-scale interfaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.