Abstract

The effect of palladium segregation was studied which resulted from the effect of CO and O2 on the surface structure and catalytic characteristics of the Pd–Ag2/Al2O3 catalyst. The IR-spectroscopic study of adsorbed CO showed that Pd1 centers isolated from each other by silver atoms predominated on the surface of reduced Pd–Ag2/Al2O3, as evidenced by the almost complete absence of absorption bands typical for the multicentred CO adsorption. In the course of catalyst treatment with CO and O2, the intensity of absorption bands characteristic of the multicenter CO adsorption considerably increased due to the transformation of a portion of monatomic Pd1 centers into multiatomic Pdn ones as a result of the surface segregation of Pd. In this case, a substantial increase in the catalyst activity in the liquid-phase hydrogenation of diphenylacetylene was observed. It was established that, after treatment with CO, the catalyst selectivity for the formation of a target olefin (stilbene) remained almost constant, whereas the treatment with O2 led to a decrease in the selectivity because of more considerable surface modification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call