Abstract

We present results of grand canonical Monte Carlo simulations of adsorption in cylindrical pores with rough surface modeled by lattice-site approach. Each site is characterized by two parameters: structural and energetic, which locally modify the structure and energy properties of the surface. There are three types of sites, randomly distributed over the wall: attractive, neutral and repulsive with respect to the smooth pore model. The results presented here show how this model affects the mechanism of adsorption and how it changes the forms of adsorption isotherm. We compare our numerical results with the experimental data of adsorption of a simple fluid (CH 4, T = 77 K) in cylindrical silica pore of diameter d = 4 nm (MCM-41 material).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.