Abstract

The adsorption of 4-picoline (4-methylpyridine) on the Cu(110) surface has been studied with time-of-flight electron stimulated desorption ion angular distribution (TOF-ESDIAD) and other methods. Using deuterium labeling in the methyl group and hydrogen labeling on the aromatic ring, it has been possible to separately monitor by TOF-ESDIAD the C-D bond directions and the C-H bond directions in the adsorbed molecule. These triangulation measurements have led to a detailed understanding of the conformation of the adsorbed molecule relative to the Cu(110) crystal lattice, allowing one to witness changes in the molecular conformation as adsorbate-adsorbate interactional effects take place for increasing coverages. At low coverages, the molecule adsorbs by the N atom at an atop Cu site with the aromatic ring parallel to the <001> azimuth and with the molecular axis inclined 33 (+/- 5) degrees along the <001> azimuth. As rows of 4-picoline molecules form long range ordered chain structures oriented along the <112> azimuth, the aromatic ring twists 29 degrees about the inclined molecular axis as a result of forces between the adsorbate molecules. The initial tilting of the molecular axis at low coverage is likely due to the interaction of the positive-outward dipole with its image in the substrate. The ring twist may result from dipoleminus signdipole forces between the adsorbate molecules in the rows formed tending to form nested parallel pyridine rings. These studies are the first to apply the TOF-ESDIAD method for the measurement of the direction of chemical bonds at more than one molecular location within an adsorbed molecule and the new method is named electron stimulated desorption-molecular triangulation (ESD-MT). The results obtained give information of importance in understanding the factors which control conformational effects during the molecular self-assembly of complex adsorbed molecules on surfaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call