Abstract

The factor dominating olefin to paraffin ratio in cobalt-catalyzed Fischer-Tropsch synthesis has been identified via experimental kinetic studies and theoretical calculations including the van der Waals interaction between the adsorbates and Co surfaces. The olefin to paraffin ratio for each carbon number is expressed as a function of adsorption energies of olefin and activation energies of hydrogenation steps. Density functional theory calculations on Co (0001) surface were performed to provide a comprehensive fundamental insight for the chemistry governing the olefin to paraffin ratio. The calculated olefin to paraffin ratio decreases with chain length except for ethylene, which agrees well with the experimental results. The differences introduced to the adsorption energies of olefin by van der Waals functional are correlated with d-band center changes of the Co surface. The carbon number dependent adsorption energies of olefin, rather than the activation energies of their hydrogenation reactions, are the driven force for the carbon number dependent olefin to paraffin ratio. The insights may delineate a new blueprint for the rational design of catalysts with enhanced olefin to paraffin ratio.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.