Abstract
The corrosion efficiency on mild steel in 1 M HCl of three imines obtained from the condensation of tribulin with aniline derivatives, namely 3-(phenylimino) indolin-2-one (TANH), 3-(4-hydroxyphenylimino) indolin-2-one (TANO) and 3-(4-chlorophenylimino) indolin-2-one (TANC) are investigated using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization technique. TANO exhibited the highest corrosion inhibition efficiency followed by TANC and TANH at optimum concentration of 1.0 mM. Langmuir's adsorption isotherm and X-ray photoelectron spectroscopy (XPS) showed that the adsorption mechanism is a prominent chemisorption phenomenon than physisorption. Based on XPS analysis, the highest inhibition efficiency of TANO was contributed by CO and CN molecules presented in the compound. The active binding sites of TANH, TANO, and TANC on the mild steel surface were determined by calculating Mulliken atomic charges and analysis of the electrostatic potential surface (ESP) at the B3LYP/6-311+G(d,p) level of theory. The correlation of imines inhibition efficiencies with its electronic parameters was investigated and the result showed that the corrosion inhibition efficiency of imines was governed mainly by the frontier orbital energy gap, the chemical softness, and chemical hardness properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.