Abstract
The adsorption, desorption, and structural properties of chlorine adlayers on Cu(111) and Ag(111) have been studied by LEED, Auger, Δϑ, and thermal desorption measurements. Ancillary experiments were also carried out on cuprous chloride for purposes of comparison with the Cu(111)-Cl data. Chlorine adsorption is rapid on both metals and follows precursor kinetics, the absolute initial sticking probabilities being ~1.0 (Cu) and ~0.5 (Ag). Δϑ results suggest that significant depolarisation of the chemisorption bond occurs at high coverages, the maximum values being + 1.2 eV (Cu) and + 1.8 eV (Ag). On Cu(111), adsorption leads to the formation of a sequence of well-ordered phases; in order of increasing coverage, these are as follows: (√3 × √3)R30°, (12√3 × 12√3)R30°, (4√7 × 4√7)R19.2°, and (6√3 × 6√3)R30°. On Ag(111) (√3 × √3)R30°, and (10 × 10) structures are observed. All six structures are susceptible to a straightforward interpretation in terms of coincidence lattices resulting from the progressive uniform compression of a hexagonal layer of Cl atoms. This interpretation is consistent with all the experimental results, and gives values for the nearest-neighbour ClCl spacing on both Cu(111) and Ag(111) which are in good agreement with other work on other surfaces. Chlorine desorbs exclusively as atoms from both metals with first-order desorption kinetics, and apparent desorption energies of 236 (Cu) and 209 (Ag) kJ mol −1. These values, which depend on an assumed pre-exponential factor of 10 13 s −1, are shown to be inconsistent with the thermochemical constraints on the system necessitated by the complete absence of Cl 2 desorption. Lower limits for the pre-exponential factors are then deduced, and the values are found to be consistent with the differences between the CuCl and AgCl systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.