Abstract
The use of activated carbon beds for the removal of natural humic and fulvic substances found in water supplies, has recently received considerable attention in water treatment operation (Lee et al., 1980; Le Cloirec et al., 1983). Moreover, the use of carbon adsorption for the reduction of haloform precursors (Anderson et al., 1981) and trihalomethanes produced by chlorination process, has contributed to a comprehensive investigation of adsorption characteristics of natural organic compounds (McCreary and Snoeyink, 1981). Many recent works showed the influence of adsorption system characteristics, such as pH, salt type, salt concentration and ionic heterogeneity in multicomponent adsorption systems, on the removal efficiency of humic and fulvic substances by activated carbon (McCreary and Snoeyink, 1980; Randtke and Jepsen, 1982; Weber et al., 1983). The purpose of this study is to examine the effect of a main component of domestic detergents, sodium triphosphate (STP), on the adsorptive capacities of powdered activated carbon (PAC) for commercially supplied humic acids, at different pH values in distilled water. Also, the effect of STP concentration and pH on the adsorption affinity of the PAC for humic acids, is discussed in relation with electrokinetic properties of carbon particles (zeta potential measurements). A first batch equilibrium study (Figs 1 and 2), showed an effective enhancement of adsorption capacity for humic acids as a function of STP concentration, in a non buffered media (pH of distilled water, close to 5.0). For example, visible absorption analysis of humic acids indicates an increase of 93% (500 mg l −1 PAC) and 133% (1000 mg l −1 PAC) in the carbon adsorption efficiency for a STP concentration from 0.2 to 1.0mM. A second batch equilibrium study (Figs 3 and 4) led to adsorption isotherms for humic acids in distilled water, as a function of STP concentration and initial pH value of the non buffered multicomponent system. Freundlich isotherms showed an increase in the adsorption capacity of the PAC for humic acids, with a decrease in pH and an increase in STP concentration. However, the adsorption capacity for humic acids is quite reduced at high pH values in presence of STP, in comparison with results obtained with distilled water. Electrokinetic measurements on PAC suspensions (Fig. 5) indicates that both humic acids and STP induce a negative variation of the zeta potential of carbon particles. In such a binary system, the zeta potential is a linear function of the pH; the negative surface charge of the carbon increasing with an elevation of pH (Fig. 6). Therefore, it appears that some adsorption of triphosphate polyanion from solution could occur, contributing then to the apparent negative surface charge of PAC particles. It has been previously showed that the type of anion in sodium salts, had little effect on the enhancement of adsorptive capacities of activated carbon for humic substances (Lafrance and Mazet, 1985), due to Na + ions. However, adsorption of TP anions on the carbon surface may produce a source of repulsive charges, unfavourable to the co-adsorption of humic acids as the pH of the binary system reach more basic conditions. The influence of possible electrostatic interactions between adsorbates at the carbon surface, on the adsorption efficiency for humic acids, could then be studied by zeta potential measurements of PAC particles during the adsorption process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.