Abstract

The surface-assisted reaction of rationally designed organic precursors is an emerging approach toward fabricating atomically precise nanostructures. Recently, on-surface decarboxylation has attracted attention due to its volatile by-products, which tend to leave the surface during the reaction means only the desired products are retained on the surface. However, in addition to acting as the reactive site, the carboxylic acid groups play a vital role in the adsorption configuration of small-molecule molecular precursors and therefore in the reaction pathways. Here, scanning tunnelling microscopy (STM), synchrotron radiation photoelectron spectroscopy (SRPES), and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy have been employed to characterize the monodeprotonated, fully deprotonated, and decarboxylated productsof isophthalic acid (IPA) on Cu(111). IPAis partially reacted (monodeprotonated) upon adsorption on Cu(111) at room temperature.Angular-dependent X-ray photoelectron spectroscopy reveals that IPA initially anchors to the surface via the carboxylate group. After annealing, the molecule fully deprotonates and reorients so that it anchors to the surface via both carboxylate groups in a bipodal configuration. NEXAFS confirms that the molecule is tilted upon adsorption and after full deprotonation. Following decarboxylation, the flat-lying molecule forms into oligomeric motifs on the surface. This work demonstrates the importance of molecular adsorption geometry for on-surface reactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.