Abstract

Porous carbons were prepared by carbonization and activation of phenol formaldehyde resin by gasification with CO2 at 900°C. Prepared activated carbon from phenol formaldehyde was characterized by measuring thermogravimetry (TG), differential thermal analysis (DTA), pH, surface area, porosity, and pore size distribution. The specific surface area (SSA) of these carbons ranges from 562 to 1904m2/g, while their point of zero charge (pHPZC) varies from 2.6 to 8.8. The ability of the prepared activated carbon by gasification with CO2 at 900°C from phenol formaldehyde resin (PFAC) to remove a series of polycyclic aromatic hydrocarbons (PAHs), e.g., naphthalene, fluorene, phenanthrene, pyrene, and fluoranthene, from mixtures of organic solvents with different polarities and chemical structures was tested. The adsorption capacity increases with the increasing the SSA and pHPZC of the carbons, confirming the roles of dispersive interactions. The kinetics and thermodynamics of the adsorption of phenanthrene as a model compound of PAH on PFAC in the organic solvent were studied. The adsorption capacity became notably greater with an increase in contact time and initial phenanthrene concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.