Abstract

Phosphorus widely existing in rainfall and wastewater impacts the water environment. In this study, sludge, cement block, and coal fly ash were employed as ceramsite material to synthesize Al-doped waste ceramsite (Al-ceramsite) for removing phosphate (PO43--P) from aqueous solutions. Batch static adsorption-desorption experiments were designed to investigate the effect of various parameters such as Al-ceramsite dosage, PO43--P concentration, temperature, initial pH, coexisting ions, and desorbents on the removal of PO43--P. Also, the fate of PO43--P removal efficiency in actual rainwater was studied through dynamic adsorption column experiments using Al-ceramsite. Results showed that Al-ceramsite could remove PO43--P efficiently under the optimum parameters as follows: Al-ceramsite dosage of 40 g/L, initial PO43--P concentration of 10 mg/L, temperature of 25 °C, and pH of 5. Besides that, the Al-ceramsite could completely remove PO43--P in actual rainwater, and the effluent PO43--P concentration was lower than the environmental quality standards for surface water Class Ⅰ (0.02 mg/L). The adsorption characteristics of Al-ceramsite on PO43--P by X-ray photoelectron spectroscopy (XPS) were further explained. As a result, ligand exchange and complexation were confirmed as the main PO43--P removal mechanism of Al-ceramsite. Thus, Al-ceramsite was prepared from industrial waste and has shown excellent potential for phosphorus removal in practical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call