Abstract

An environmentally friendly organic biosorbent was fabricated using hay by succinylation. Metallic cation adsorption tests were performed using synthetic nickel(II) and cadmium(II) solutions to simulate heavy-metal recovery from aqueous solution. The adsorption efficiency was greater than 98% for both cadmium and nickel ions when the biosorbent concentration was 5.0 g/L and the initial metal concentrations were 50 mg/L. The surface of the biosorbent was characterized using Fourier transform infrared spectroscopy to investigate the changes in the surface functional groups. The functional groups changed according to the surface treatment, resulting in an effective biosorbent. The kinetics of the metals adsorption revealed that the reactions are pseudo-second order, and the adsorption isotherm well followed the Langmuir model. The maximum adsorption capacities predicted by the Langmuir model were 75.19 mg/g and 57.77 mg/g for cadmium and nickel, respectively. The fabricated biosorbent was regenerated using NaCl multiple times, with 2.1% for Cd and 4.0% for Ni in adsorption capacity after three regeneration cycles. The proposed biosorbent can be a good alternative to resin or other chemical adsorbents for heavy-metal recovery in metallurgical processing or municipal water treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.