Abstract

Emodin, a hydroxyanthraquinone derivative, has been used as medicine for more than 2000 years due to its extensive pharmacological activities. Large-scale production of emodin has been achieved by optimizing the fermentation conditions of marine-derived Aspergillus flavus HN4-13 in a previous study. However, the fermentation broth contained complex unknown components, which adversely affected the study of emodin. Herein, the conditions for the enrichment of emodin from A. flavipes HN4-13 extract using XAD-16 resin were optimized, and a separation method with high efficiency, simple operation, a low cost, and a large preparative scale was established. The adsorption process of emodin on the XAD-16 resin conformed to pseudo-second-order kinetics and Langmuir models. The optimal conditions for the adsorption process were as follows: An emodin concentration, flow rate, and loading volume of 0.112 mg/mL, 2 BV/h, and 10 BV, respectively. For desorption, 50% ethanol was used to elute impurities and 80% ethanol was used to desorb emodin. After enrichment with XAD-16 resin, the emodin content increased from 1.16% to 11.48%, and the recovery rate was 75.53% after one-step treatment. These results demonstrate the efficiency of the simple adsorption–desorption strategy, using the XAD-16 resin for emodin enrichment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.