Abstract

Landfill leachate is a high-strength wastewater. If it is not managed properly, it can pollute surrounding environment. The aim of this study is to determine the simultaneous adsorption capacity of iron oxide-coated gravel for metals such as Cd(II), Cu(II), Fe(II), Ni(II) and Zn(II) in high-strength leachate sample. Different operating conditions such as pH, time, and dosages were investigated to determine the kinetics and mechanism of adsorption process. Coating with iron oxide changed the external surface of gravel. The adsorption capacities increased with increased pH, and the optimum pH was found to be 7. High removal rates were observed in a short period of time. The Freundlich model fitted reasonably well to the experimental data, indicating multilayer adsorption process and the heterogeneity of the surface (R 2 ranging 0.57–0.94). The Temkin model fitted well to the experimental data as well (R 2 ranging 0.67–0.98), indicating that the adsorption is an exothermic process. The adsorption of ions was found to obey second-order kinetics, indicating one-step, surface-only adsorption process. The degree of metal adsorption on iron oxide-coated gravel at pH 7 was in the order Cu(II) > Cd(II) > Fe(II) > Zn(II) > Ni(II).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.