Abstract
To significantly reduce the bleeding of 4,4′,(5′)‐di(tert‐butylcyclohexano)‐18‐crown‐ 6 (DtBuCH18C6), an improved novel macroporous silica‐based polymeric composite (DtBuCH18C6+TBP)/SiO2‐P was synthesized. It was performed by impregnating and immobilizing DtBuCH18C6 into the pores of the SiO2‐P particles via the molecular modification of DtBuCH18C6 with a tri‐n‐butyl phosphate (TBP) through hydrogen bonding. The adsorption of a few typical simulated fission and non‐fission products Pd(II), La(III), Na(I), K(I), Sr(II), Ba(II), Ru(III), Cs(I), Mo(VI), and Y(III) onto (DtBuCH18C6+TBP)/SiO2‐P was investigated at 323 K. It was done by examining the effect of contact time and the HNO3 concentration in a range of 0.1–5.0 M. Sr(II), one of the main heat emitting nuclides, showed optimum adsorption onto (DtBuCH18C6+TBP)/SiO2‐P in 2.0 HNO3, while others showed very weak or almost no adsorption except a portion of Ba(II). The leaching of TBP and DtBuCH18C6 from (DtBuCH18C6+TBP)/SiO2‐P was evaluated. The average content of DtBuCH18C6, 298.7 ppm, leached from (DtBuCH18C6+TBP)/SiO2‐P in 2.0 M HNO3 at 323 K was obviously lower than that of 797.3 ppm leached from DtBuCH18C6/SiO2‐P at 298 K. The significant reduction of DtBuCH18C6 leaching from its macroporous silica‐based polymeric adsorbent was achieved. It is useful for the recycle operation of the silica‐based DtBuCH18C6 impregnated polymeric composite in chromatographic partitioning of Sr(II) from high level liquid waste (HLLW).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.