Abstract

Tris(2-chloroethyl) phosphate (TCEP) as a new type of flame retardant exists in various water environments, causing great risks to humans and the environment. In this study, shrimp shell was used to prepare an economical and environmental-friendly adsorbent for the efficient removal of TCEP. The systematic studies including characterization, removal performance, and adsorption mechanism of shrimp shell biochar toward TCEP were carried out. Adsorption kinetics and thermodynamics showed that fast equilibrium reached within 30 min, the maximum adsorption capacity qm was 108 μmol g−1 at 298 K, and the adsorption process is spontaneous and exothermic. The environmental factor, such as temperature, pH, inorganic anions and organic matter hardly affected the adsorption performance. Structural characterization indicated that the hierarchical porous structure of shrimp shell biochar is the key to excellent adsorption performance. The adsorption mechanisms were further revealed using density functional theory (DFT) calculations, and the hydrogen bond, van der Waals interactions, Cl–H interactions, and pi-H interactions were identified as potential interaction mechanisms between TCEP and specific biochar structures. The calculated binding energy between TCEP and simplified biochar structure suggested that oxygen-containing groups especially carboxyl, hydroxyl and aldehyde facilitate the adsorption. Our work not only provides a novel strategy for the quick remediation of organophosphate-contaminated water environments but also offers new opportunities for crustacean waste biomass valorization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.