Abstract

2,2,6,6-Tetramethylpiperidine-1-oxyl (TEMPO) was oxidized to produce TEMPO-oxidized cellulose (TOCS) with a nanofunctionalized surface and abundant carboxyl groups. In a batch experiment, three pH values (2, 5 and 7), three modes (single, binary and multiple systems), and systems with inorganic and organic materials were applied to explore the adsorption of coexisting metals and antibiotics on TOCS. The adsorption capacity of TOCS was substantially influenced by these factors, and the adsorption behaviors were also different in these systems. In general, the coordination behaviors and electrostatic attraction between Cd(II) and carboxyl groups were identified as the mechanism employed by the single system, while hydrophobic interactions, π interactions, hydrogen bonding and pore filling contributed to the adsorption of sulfonamides (SAs) on TOCS in the binary system. The bridging effect was determined to be the key mechanism; i.e., most Cd(II) and SAs in the form of [SA-Cd] complexes interacted with carboxyl groups, especially in the presence of high concentrations of Cd(II) and SAs. These adsorption behaviors were determined quantitatively by performing density functional theory (DFT) calculations. In addition, TOCS showed excellent adsorption capacity in a more complex interference system, and the maximum adsorption capacity was 5.83 mg/g.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.