Abstract

Plastic flotation attracts increasing attention in the process of recycling and will bring potential application in industry after theoretical perfection. For a separated ternary system of polyethylene terephthalate (PET), polyvinyl chloride (PVC) and polyethylene (PE), adsorption behavior and selectivity mechanism of flotation reagents were investigated by multi-characterization tests and batch equilibrium adsorption method. Quantitative adsorption results indicate that frother polyethylene glycol (PEG) only acts on gas and liquid phases in the flotation system with negligible adsorption capacity onto solid phase. For depressant sodium lignosulphonate (SL), the pseudo-first-order and Langmuir isotherm models are suitable for corresponding kinetic and equilibrium data of PET or PVC. Thermodynamic parameters further indicate that the adsorption of SL is a spontaneous and endothermic process, which neither belongs to the pure physisorption nor to the pure chemisorption. Adsorption models of SL were established based on hydrogen bond, with three clear bonding types (OH…π*, OH…O, and OH…Cl). Selectivity mechanism can be attributed to the selective hydrogen bond acceptors and donors, which are provided by specific plastic and depressant, respectively. In the light of these theoretical fundings, new targeted reagents or pre-treatments are expected to be developed towards more complex flotation system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call