Abstract
In this study, the magnetic Fe3O4-graphene oxide (GO) nanohybrid composite material was prepared via the combination of the modified Hummer's method and coprecipitation. The morphology of the hybrid sample showed that the diffusion of Fe3O4 nanoparticles into the porous channels of mesoporous GO layers not only restricted the restacking of GO nanosheets but also prevented the leaching and agglomeration of magnetic nanoparticles. The result of the kinetic and isotherm studies that were performed to evaluate the adsorption mechanism showed a good fit with the pseudo-second-order kinetic and Langmuir isotherm models. The As(V) adsorption efficiency, H, of the GO/Fe3O4 nanohybrid composite material reached the maximum value of 99.37% after 60min. The maximum adsorption capacity qm of the GO/Fe3O4 nanohybrid material was 14.1mg·g-1 in an acidic aqueous solution (pH 1). The role and contribution of GO and Fe3O4 nanoparticles in adsorption and the improvement in As(V) adsorption efficiency were also investigated in further detail. The findings of this work suggested that the GO/Fe3O4 nanohybrid material could be widely applied for polluted water treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Analytical sciences : the international journal of the Japan Society for Analytical Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.