Abstract

First-principles calculations have been carried out to investigate the adsorption of Pdn (n ≤ 10) clusters on the single-walled (8, 0) and (5, 5) SiC nanotubes (SiCNTs). We find that the Pdn clusters can be stably adsorbed on the outer surfaces of both SiCNTs through an exothermic adsorption process. The adsorption energies of the Pdn clusters on the (8, 0) SiCNT are generally larger than those of clusters on the (5, 5) SiCNT. The number of bonds between the Pdn clusters and the SiCNTs increases with increasing cluster size. The Pd atoms adjacent to the SiCNTs adsorb preferentially on the bridge sites over an axial Si–C bond. The adsorption leads to elongation of the Pd–Pd bond lengths and structural reconstruction for the Pdn clusters. Moreover, the adsorbed Pdn clusters show two-layered structures at the cluster size n ≥ 4. We also find that the adsorbed Pdn clusters induce some impurity states within the band gap of the pristine SiCNTs and the strong pd hybridization near the Fermi level, thereby reducing the band gap. The charge transfer from the SiCNTs to the Pd atoms that occurs is observed for all the systems considered. Due to the strong interactions between the Pdn clusters and the SiCNTs, most adsorbed Pdn clusters exhibit zero magnetic moment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.