Abstract

Spiropyrans are prototype molecular switches, which undergo a reversible photoinduced ring-opening/-closure reaction between the closed three-dimensional spiropyran (SP) and the open, planar merocyanine (MC) form. In solution the SP isomer is the thermodynamically stable form. Using high resolution electron energy loss spectroscopy, we resolve a thermally-activated irreversible ring-opening reaction of nitrospiropyran resulting in the MC form for coverages above one monolayer. Thus, the situation found in solution is reversed for the adsorbed molecules, since the MC form is more stable due to the modified energetics by the presence of the substrate. In addition, illumination with blue light (445 nm) induced also the ring-opening, while the photostimulated back-reaction could not be observed. The photoisomerization is driven by a substrate-mediated process, i.e. a charge transfer from the substrate into molecular states. The situation changes completely in the monolayer regime. Neither a thermally-assisted nor a photoinduced ring-opening reaction has been identified. We ascribe the suppression to sterical effects stabilizing the SP form due to the surface structure of Bi(1 1 4), which consists of straight atomic rows separated by rough valleys.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.